*TB 9-6625-2323-35

DEPARTMENT OF THE ARMY TECHNICAL BULLETIN

CALIBRATION PROCEDURE FOR SIGNAL GENERATOR WILTRON/ANRITSU, MODEL 68369NV

Headquarters, Department of the Army, Washington, DC 4 February 2005

Distribution Statement A: Approved for public release; distribution is unlimited.

REPORTING OF ERRORS AND RECOMMENDING IMPROVEMENTS

You can improve this manual. If you find any mistakes or if you know of a way to improve these procedures, please let us know. Mail your letter or DA Form 2028 (Recommended Changes to Publications and Blank Forms) directly to: Commander, US Army Aviation and Missile Command, AMSAM-MMC-MA-NP, Redstone Arsenal, AL 35898-5000. A reply will be furnished to you. You may also provide DA Form 2028 information to AMCOM via e-mail, fax, or the World Wide Web. Our fax number is DSN 788-6546 or Commercial 256-842-6546. Our e-mail address is 2028@redstone.army.mil. Instructions for sending an electronic 2028 may be found of this back manual. For the World Wide https://amcom2028.redstone.armv.mil.

			Paragraph	Page
SECTION	I.	IDENTIFICATION AND DESCRIPTION		
		Test instrument identification	1	2
		Forms, records, and reports	2	2
		Calibration description	3	2
	II.	EQUIPMENT REQUIREMENTS		
		Equipment required	4	3
		Accessories required	5	4
	III.	CALIBRATION PROCESS		
		Preliminary instructions	6	4
		Equipment setup	7	5
		Frequency accuracy	8	6
		Output level flatness	9	8
		Attenuator accuracy	10	8
		Spectral purity	11	11
		Amplitude modulation	12	13
		Frequency modulation	13	16
		Pulse modulation	14	19
		Final procedure	15	22

^{*}This bulletin supersedes TB 9-6625-2323-35, dated 22 May 2001, including all changes.

SECTION I IDENTIFICATION AND DESCRIPTION

- 1. Test Instrument Identification. This bulletin provides instructions for the calibration of Signal Generator, Wiltron/Anritsu, Model 68369NV. The manufacturer's manual was used as the prime data source in compiling these instructions. The equipment being calibrated will be referred to as the TI (test instrument) throughout this bulletin.
 - a. Model Variations. None.
- **b. Time and Technique**. The time required for this calibration is approximately 5 hours, using the dc and low frequency and microwave techniques.

2. Forms, Records, and Reports

- **a**. Forms, records, and reports required for calibration personnel at all levels are prescribed by TB 750-25.
- **b**. Adjustments to be reported are designated (R) at the end of the sentence in which they appear. When adjustments are in tables, the (R) follows the designated adjustment. Report only those adjustments made and designated with (R).
- **3.** Calibration Description. TI parameters and performance specifications which pertain to this calibration are listed in table 1.

Table 1. Calibration Description

Table 1. Cambration Description			
Test instrument parameters	Perform specifications		
Frequency	Range: ± 10 MHz to 40 GHz ¹		
	Accuracy: <± 5 parts in 10 ⁻⁸		
	Time Base Stability: <± 5 parts in 10 ⁻⁸ per day		
Harmonics:			
Harmonics			
10 MHz to ≤50 MHz	<-30 dBc		
>50 MHz to ≤2 GHz	<-40 dBc		
>2 GHz to ≤20 GHz	<-60 dBc		
>20 GHz to ≤40 GHz ¹	<-40 dBc		
Non-harmonic			
$10 \text{ MHz to} \le 2 \text{ GHz}$	<-40 dBc		
$>$ 2 GHz to \leq 40 GHz	<-60 dBc		
RF output			
Level: 7 dBm	Accuracy: ± 1 dB		
Flatness:	Accuracy:		
10.0 MHz to 50.0 MHz	± 2 dB for a 3 dB output level		
50 MHz to 40 GHz1	$\pm 0.8 \text{ dB}$ for a 7 dB output level		
Attenuator:	Accuracy:		
$0 ext{ to } -122 ext{ dB}^2$	± 1 dB		

Footnotes at end of table.

Table 1. Calibration Description - Continued

Test instrument parameters	Perform specifications	
Pulse modulation	1 erform specifications	
	DC (10 MH	
Pulse rate:	DC to 10 MHz unleveled	
	100 Hz to 5 MHz leveled	
7 1 (00)	D 40.3577	
Pulse on/off ratio:	Range: 10 MHz to 40 GHz ¹	
	Accuracy: > 80 dB	
Rise/fall time:	< 10 nS	
Overshoot:	< 10%	
Amplitude modulation:	10 MHz to 40 GHz ¹	
Depth:	Range: 0 to 90% ³	
	Accuracy: ± 10 % of setting	
Incidental PM:	< 0.2 radians 30% AM depth. 10 kHz mod freq	
Modulation frequency response:	Range: DC to 10 kHz	
	Accuracy: <0.3 dB	
Frequency modulation:		
Unlocked FM mode:	Range: ± 100 MHz (DC to 100 Hz mod rate) ⁴	
	Accuracy: ±5%	
	Range: ± 10 MHz (DC to 8 MHz mod rate) ⁵	
	Accuracy: ±5%	
Locked FM Mode:	Range: The lesser of ± 10 MHz or Fmod X 300	
	(1 kHz to 8 MHz mod rate) ⁶	
	(2 1112 00 0 11112 1104 1400)	
Incidental AM:	< 2% ⁷	
Modulation Frequency Response:	Range: 3 kHz to 8 MHz ⁸	
1 1 1 V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Accuracy: <1 dB	
1NT 4 10 CIT	moundy, in up	

 $^{^{1}}$ Not verified above 18 GHz.

SECTION II EQUIPMENT REQUIREMENTS

4. Equipment Required. Table 2 identifies the specific equipment to be used in this calibration procedure. This equipment is issued with Secondary Transfer Calibration Standards Set AN/GSM-287 or AN/GSM-705. Alternate items may be used by the calibrating activity. The items selected must be verified to perform satisfactorily prior to use and must bear evidence of current calibration. The equipment must meet or exceed the minimum use specifications listed in table 2. The accuracies listed in table 2 provide a four-to-one ratio between the standard and TI. Where the four-to-one ratio cannot be met, the actual accuracy of the equipment selected is shown in parenthesis.

 $^{^2\}mathrm{Verified}$ to 90 dB

³Verified at 50% depth, 1 kHz mod freq., 5 GHz carrier frequency.

⁴Verified at .1 Hz mod. rate, 100 MHz deviation.

⁵Verified at 100 kHz Mod rate, 240 kHz deviation.

 $^{^6\}mathrm{Verified}$ at 1 kHz to 8 MHz mod rate, 240 kHz deviation.

 $^{^7\}mathrm{Verified}$ at 500 kHz deviation, 200 kHz mod frequency.

 $^{^8\}mathrm{Verified}$ from 3 kHz to 50 kHz.

5. Accessories Required. The accessories required for this calibration are common usage accessories, issued as indicated in paragraph 4 above, and are not listed in this calibration procedure. The following peculiar accessory is required: Radio Frequency Detector, Hewlett-Packard, Model HP-423A.

Table 2. Minimum Specifications of Equipment Required

rable 2. William Specifications of Equipment Required				
		Manufacturer and model		
Common name	Minimum use specifications	(part number)		
AUDIO ANALYZER	Range: 1.0 to 100.0 kHz	Boonton, Model 1121		
	Accuracy: <2.0%	(1121)		
FREQUENCY	Range: 10 MHz	Tracor, Model 527E (MIS-		
DIFFERENCE METER	Resolution: 1 part in 10 ⁻⁸	10318)		
MEASURING RECEIVER	Range: 2.0 to 18 GHz	Hewlett-Packard, Model		
	Range: +11 to -74.5 dBm	8902A w/sensors, Hewlett-		
	Accuracy: +.5 dB	Packard, Model 11792A		
	Range: AM 0 to 80%	(11792A), and microwave		
	Accuracy: ±2% at 1 kHz	converter, model 11793A		
	Range: FM .05 to 100 kHz	(11793A)		
	Accuracy: ±2% at 1 kHz			
	Deviation: ± 12 kHz			
MICROWAVE	Range: 10 MHz to 18 GHz	Hewlett-Packard Model		
FREQUENCY COUNTER	Accuracy: 1	5352B-001 (5352B-001)		
0.2.2.1.1.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	7	(0.00 0.00 10)		
OSCILLOSCOPE	Range: 5.0 V at 100 ns	(OS-303/G)		
	Accuracy: 3.0%	(122222222222		
SPECTRUM ANALYZER	Range: 2 to 18 GHz at +10 to -60 dBm	(AN/USM-677)		
	Accuracy: ±0.2% of the center frequency			
	+20% of the span/div			
	Range: Span 500 Hz to 20 MHz			
	Accuracy: ±5%			
TIME/FREQUENCY	Frequency: 1 MHz	Datum, Model ET6000-75		
WORKSTATION	Accuracy: 5 parts in 10 ⁻¹⁰ per day	(13589305)		

¹Time base tied to the TI.

SECTION III CALIBRATION PROCESS

6. Preliminary Instructions

- a. The instructions outlined in paragraphs 6 and 7 are preparatory to the calibration process. Personnel should become familiar with the entire bulletin before beginning the calibration.
- **b**. Items of equipment used in this procedure are referenced within the text by common name as listed in table 2.

- c. Unless otherwise specified, verify the result of each test and, whenever the test requirement is not met, take corrective action before continuing with the calibration. Adjustments required to calibrate the TI are included in this procedure. Additional maintenance information is contained in the manufacturer's manual and ST400-AW-MMC-020 and ST400-HW-MMC-030 for this TI.
 - **d**. Unless otherwise specified, all controls and control settings refer to the TI.

7. Equipment Setup

WARNING

HIGH VOLTAGE is used or exposed during the performance of this calibration. DEATH ON CONTACT may result if personnel fail to observe safety precautions. REDUCE OUTPUT(s) to minimum after each step within the performance check where applicable.

a. Remove TI from protective cover only as necessary to make adjustments.

NOTE

For the remainder of this procedure the 68369NV connected to the signal generator workstation will be called the local oscillator.

CAUTION

Before connecting TI to power source, make sure TI is set to the power source line voltage as shown on rear of TI.

- **b**. Connect TI to 115 V ac power source.
- **c**. Press **POWER** switch to **OPERATE** and allow at least one hour for TI to warm-up and stabilize.
 - **d**. Connect equipment as shown in figure 1.

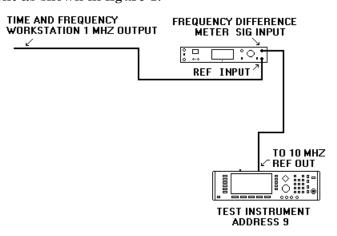


Figure 1. Time base verification connection.

NOTE

TI must have power applied and in STANDBY or OPERATE for at least 120 continuous hours before the frequency drift specification can be verified.

- e. Verify that the frequency difference meter drift is less than 5 parts in 10-8 per day.
- **f.** Disconnect frequency difference meter from the TI and the time/frequency workstation.

8. Frequency Accuracy

a. Performance Check

(1) Connect equipment as indicated in figure 2.

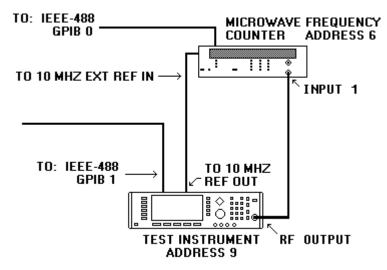


Figure 2. Frequency accuracy hook-up.

- (2) Press TI keys as listed in (a) through (e) below.
 - (a) SYSTEM, Reset.
 - (b) **OUTPUT** off.
 - (c) Level Control, L0, Edit L0, 0, and dB.
 - (d) Frequency Control, F0, Edit F0, 1, and GHz.
 - (e) OUTPUT on.
- (3) Set microwave frequency counter to measure frequency on **INPUT 1**.
- (4) Verify that the microwave frequency counter indicates within limits listed in table 3.

- (5) Set TI frequency to the next frequency listed in table 3, using the TI arrow pad, and repeat (4) above.
 - (6) Repeat (4) and (5) above for the remaining frequencies listed in table 3.

Table 3. Frequency Resolution Accuracy

Table 3. Frequency Resolution Accuracy				
Test instrument	Microwave frequency counter			
center frequency	indications			
(GHz)	Min	Max		
1.000000000	999999990	1000000010		
1.000000100	1000000090	1000000110		
1.000000200	1000000190	1000000210		
1.000000300	1000000290	1000000310		
1.000000400	1000000390	1000000410		
1.000000500	1000000490	1000000510		
1.000000600	1000000590	1000000610		
1.000000700	1000000690	1000000710		
1.000000800	1000000790	1000000810		
1.000000900	1000000890	1000000910		
1.000001000	1000000990	1000001010		
2.000000000	1999999990	200000010		
2.000001000	2000000990	2000001010		
2.000002000	2000001990	2000002010		
2.000003000	2000002990	2000003010		
2.000004000	2000003990	2000004010		
2.000005000	2000004990	2000005010		
2.000006000	2000005990	2000006010		
2.000007000	2000006990	2000007010		
2.000008000	2000007990	2000008010		
2.000009000	2000008990	2000009010		
2.000010000	2000009990	2000010010		
3.000000000	2999999990	300000010		
4.000000000	3999999990	400000010		
5.000000000	4999999990	5000000010		
6.000000000	5999999990	6000000010		
7.000000000	6999999990	7000000010		
8.000000000	7999999990	800000010		
9.000000000	8999999990	9000000010		
10.000000000	9999999990	10000000010		
11.000000000	10999999990	11000000010		
12.000000000	11999999990	12000000010		
13.000000000	12999999990	1300000010		
14.000000000	13999999990	14000000010		
15.000000000	14999999990	15000000010		
16.000000000	15999999990	16000000010		
17.000000000	16999999990	17000000010		
18.000000000	17999999990	18000000010		

- (7) Reduce all outputs to minimum.
- (8) Disconnect microwave frequency counter from TI.
- **b.** Adjustments. No adjustments can be made.

9. Output Level Flatness

a. Performance Check

- (1) Connect power sensor module to measuring receiver **CALIBRATION RF POWER OUTPUT**.
 - (2) Calibrate and save the calibration of the power sensor.
- (3) Disconnect power sensor module from the measuring receiver **CALIBRATION RF POWER OUTPUT** and connect it to the TI **RF OUTPUT**.
 - (4) Press TI keys as listed in (a) through (e) below:
 - (a) SYSTEM, Reset.
 - (b) **OUTPUT** off.
 - (c) Level Control, L1, Edit L1, 7, and dB.
 - (d) **OUTPUT** on.
 - (e) Frequency Control, F0, Edit F0, 1, and GHz.
- (5) Using measuring receiver and RF power techniques in Log Mode, sweep the TI from 2 GHz to 18 GHz in 1 GHz steps and record the highest and lowest levels.
- (6) Calculate the flatness using the formula below. The flatness will be less than or equal to the maximum limit listed in table 4.

Flatness = (highest - lowest)/2

Table 4. Output Level Flatness

Table 4. Output Devel Flatiless				
Start frequency	Stop frequency	Max limit		
$2 \mathrm{GHz}$	$18\mathrm{GHz}$.799		

b. Adjustments. No adjustments can be made.

10. Attenuator Accuracy

a. Performance Check

- (1) Connect power sensor module to measuring receiver CALIBRATION RF POWER OUTPUT. Connect the local oscillator 10 MHz OUT to both the measuring receiver 10 MHz INPUT and the TI 10 MHz REF IN.
 - (2) Calibrate and save the calibration of the power sensor.
- (3) Disconnect the measuring receiver power sensor module from the **CALIBRATION RF POWER OUTPUT** and connect it to the TI **RF OUTPUT**.
 - (4) Press TI keys as listed in (a) through (e) below:
 - (a) SYSTEM, Reset.
 - (b) **OUTPUT** off.

- (c) Frequency Control, F0, Edit F0, 2, and GHz.
- (d) **OUTPUT** on.
- (e) Level Control, L1, Edit L1, 0, and dB.
- (5) Using measuring receiver and RF power techniques in Log Mode verify that the measuring receiver indicates within tolerances listed in table 5.
- (6) Using technique of (4) (e) set the TI to the remaining levels listed in table 5 and repeat (5) above.

Table 5. 2 GHz Output Level Test 1 dB Steps

Test instrument		•
output level		
(dB)	Min	Max
0	-1	1
-1	-2	0
1	0	2
2	1	3
3	2	4

- (7) Press Level Control, L1, Edit L1, 0, and dB.
- (8) Using standard tuned level measurement techniques, verify the measuring receiver indicates within minimum and maximum limits for TI output level as listed in table 6 below.
- (9) Use the TI arrow key to decrement the output level 10 dB, as indicated in table 6, verifying the indication is within limits listed in table 6.
 - (10) Repeat (9) above for remaining TI output level settings listed in table 6.

Table 6. 2 GHz Output Level Test 10 dB Steps

	l Carpar Level 1	
Test instrument		
output level		
(dB)	Min	Max
0	-1	1
-10	-11	-9
-20	-21	-19
-30	-31	-29
-40	-41	-39
-50	-51	-49
-60	-61	-59
-70	-71	-69
-80	-81	-79
-90	-91	-89

- (11) Press TI keys as listed in (a) and (b) below:
 - (a) Frequency Control, F0, Edit F0, 5, and GHz.
 - (b) Level Control, L1, Edit L1, 0, and dB.

- (12) Using measuring receiver and RF power techniques in Log Mode verify that the measuring receiver indicates within tolerances listed in table 7.
- (13) Using TI arrow key set the TI to the remaining levels listed in table 7 and repeat (12) above.

Table 7. 5 GHz Output Level Test 1 dB Steps

Test instrument output level	•	
(dB)	Min	Max
0	-1	1
-1	-2	0
1	0	2
2	1	3
3	2	4

- (14) Press Level Control, L1, Edit L1, 0, and dB.
- (15) Using standard tuned level measurement techniques verify the measuring receiver indicates within minimum and maximum limits for TI output level as listed in table 8 below.
- (16) Use the TI arrow key to decrement the output level as indicated in table 8 and repeat (15) above.
 - (17) Repeat (16) above for remaining TI output level settings listed in table 8.

Table 8. 5 GHz Output Level Test 10 dB Steps

Test instrument		
output level		
(dB)	Min	Max
0	-1	1
-10	-11	-8
-20	-21	-18
-30	-31	-28
-40	-41	-38
-50	-51	-48
-60	-61	-58
-70	-71	-66.5
-80	-81	-76.5
-90	-91	-86.5

- (18) Press TI keys as listed in (a) through (b) below:
 - (a) Frequency Control, F0, Edit F0, 18, and GHz.
 - (b) Level Control, L1, Edit L1, 0, and dB.
- (19) Using measuring receiver and RF power techniques in log mode verify that the measuring receiver indicates within tolerances listed in table 9.
- (20) Using TI arrow key set the TI to the remaining levels listed in table 9 and repeat (19) above.

Table 9. GHz Output Level Test 1 dB Steps

Test instrument output level		
(dB)	Min	Max
0	-1	1
-1	-2	0
1	0	2
2	1	3
3	2	4

- (21) Press Level Control, L1, Edit L1, 0, and dB.
- (22) Using standard tuned level measurement techniques, verify the measuring receiver indicates within minimum and maximum limits for TI output level as listed in table 8 below.
- (23) Use the TI arrow key to decrement the output level as indicated in table 10 and repeat (22) above.
 - (24) Repeat (23) above for remaining TI output level settings listed in table 10.

Table 10. 18 GHz Output Level Test 10 dB Steps

rable 10. 16 GHz Output Level Test 10 db Steps				
Test instrument				
output level				
(dB)	Min	Max		
0	-1	1		
-10	-11	-8		
-20	-21	-18		
-30	-31	-28		
-40	-41	-38		
-50	-51	-48		
-60	-61	-58		
-70	-71	-66.5		
-80	-81	-76.5		
-90	-91	-86.5		

- (25) Reduce TI output to minimum.
- (26) Disconnect TI from measuring receiver.
- **b.** Adjustments. No adjustments can be made.

11. Spectral Purity

a. Performance Check

(1) Connect equipment as shown in figure 3.

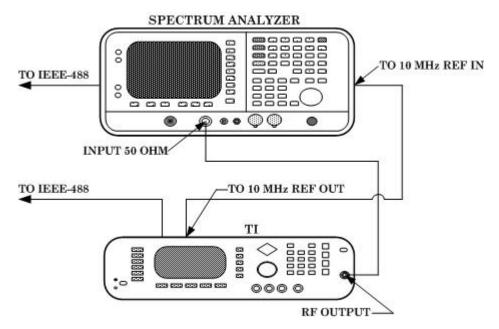


Figure 3. Spectral purity hookup.

- (2) Press TI keys as listed in (a) through (e) below.
 - (a) SYSTEM, Rest.
 - (b) **OUTPUT** off.
 - (c) Level Control, L1, Edit L1, 3, and dB.
 - (d) Frequency Control, F0, Edit F0, 1, 0, and GHz.
 - (e) OUTPUT on.
- (3) Set the spectrum analyzer controls as listed in (a) through (d) below.
 - (a) Span to 10 MHz.
 - (b) Center Frequency to 50 MHz.
 - (c) Res BW to 1 MHz.
 - (d) Sweep Time to Auto.
- (4) On the spectrum analyzer measure the worst case harmonic and non-harmonic signals for the frequencies listed in table 11 and verify that TI is less than or equal to the maximum indications listed.

Table 11. Spectral Purity

Test instrument	Spectrum analyzer	Harmonic	Maximum
frequency	reference frequency	frequency	indication
10 MHz	10 MHz		6
10 MHz	10 MHz	20 MHz	-30
10 MHz	10 MHz	30 MHz	-30
20 MHz	20 MHz		6
20 MHz	20 MHz	40 MHz	-30
20 MHz	20 MHz	80 MHz	-30

Table 11. Spectral Purity - Continued

Test inst		Spectrum a			nonic	Maximum
frequ	ency	reference fi		frequ	iency	indication
30	MHz	30	MHz			6
30	MHz	30	MHz	60	MHz	-30
30	MHz	30	MHz	90	MHz	-30
40	MHz	40	MHz			6
40	MHz	40	MHz	80	MHz	-30
40	MHz	40	MHz	120	MHz	-30
350	MHz	350	MHz			6
350	MHz	350	MHz	700	MHz	-40
350	MHz	350	MHz	1050	MHz	-40
1.6	GHz	1.6	GHz			6
1.6	GHz	1.6	GHz	3.2	GHz	-40
1.6	GHz	1.6	GHz	3.2	GHz	-40
2.1	GHz	2.1	GHz			6
2.1	GHz	2.1	GHz	4.2	GHz	-60
2.1	GHz	2.1	GHz	6.3	GHz	-60
2.1	GHz	2.1	GHz	8.4	GHz	-60
2.1	GHz	2.1	GHz	10.5	GHz	-60
2.1	GHz	2.1	GHz	12.6	GHz	-60
2.1	GHz	2.1	GHz	14.7	GHz	-60
2.1	GHz	2.1	GHz	16.8	GHz	-60
3.6	GHz	3.6G	Hz			6
3.6	GHz	3.6 G	Hz	7.2	GHz	-60
3.6	GHz	3.6 G	Hz	10.8	GHz	-60
3.6	GHz	3.6 G	Hz	14.4	GHz	-60
3.6	GHz	3.6 G	Hz	18.0	GHz	-60
7.0	GHz	7.0G	Hz			6
7.0	GHz	7.0 G	Hz	14.0	GHz	-60

- (5) Reduce all outputs to minimum.
- (6) Disconnect TI from spectrum analyzer.
- **b.** Adjustments. No further adjustments can be made.

12. Amplitude Modulation

a. Performance Check

- (1) Connect equipment as shown in figure 4.
- (2) Set audio analyzer controls as listed in (a) through (d) below.
 - (a) PRGM 99 ENTER RCL.
 - (b) 600Ω output
 - (c) Source frequency to 1 kHz.
 - (d) Source Level to 0.7 V.

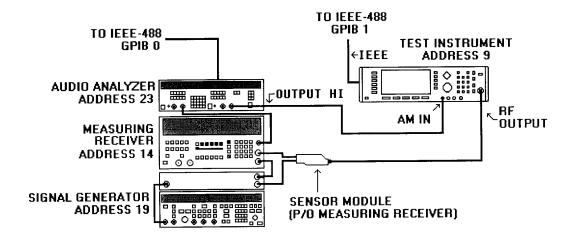


Figure 4. Amplitude modulation hookup.

- (3) Set measuring receiver to measure amplitude modulation, with **+PEAK** detector, 300 Hz high pass and 3 kHz Lo pass filters and at a frequency of 5 GHz.
 - (4) Press TI keys as listed in (a) through (i) below.
 - (a) SYSTEM, Rest.
 - (b) **OUTPUT** off.
 - (c) Level Control, L1, Edit L1, -3, and dB.
 - (d) Frequency Control, F0, Edit F0, 5, and GHz.
 - (e) **OUTPUT** on.
- (f) Modulation, AM, More, Log/Linear to display Depth in %, and Previous Menu.
 - (g) Edit Depth, 50, Edit Depth.
- (h) **Mod. Wave**, press arrow key to highlight sine wave, press **Select**, and **Previous Menu**
 - (i) Edit Rate, 1, KHz, and Edit Rate.
- (5) Verify that the measuring receiver indicates within 50% AM @ 5 GHz limits listed in table 12.
 - (6) Press TI keys as listed in (a) through (d) below.
- (a) Modulation, AM, More, Log/Linear to display Depth in %, and Previous Menu.
 - (b) Edit Depth, 30 Hz, Edit Depth.
- (c) **Mod Wave,** press arrow key to highlight **sine wave,** press **Select**, and **Previous Menu**.
 - (d) Edit Rate, 10, KHz, and Edit Rate.

- (7) Set measuring receiver to measure phase modulation, with +PEAK detector.
- (8) Verify that the measuring receiver indicates within Incd. PM @ 5 GHz limits listed in table 12.

Table 12. AM Meter

	Measuring receiver indication		
Test description	Min	Max	
50% AM @ 5 GHz	45.0	55.0	
Incd. PM @ 5 GHz	.001	.2	

- (9) Set measuring receiver to measure amplitude modulation, with +PEAK detector, high pass filter to <20 Hz, and Lo pass filter to >20 kHz.
 - (10) Press TI keys as listed in (a) through (h) below.
 - (a) Frequency Control, F0, Edit F0, 5, and GHz.
 - (b) Level Control, L1, Edit L1, -3, and dB.
 - (c) Modulation, AM, More, Int/Ext to select External AM Status.
 - (d) **OUTPUT on**.
 - (e) More, Log/Linear to display Sensitivity in dB, and Previous Menu.
 - (f) Front/Rear to display Source Front.
 - (g) $600 \Omega/50 \Omega$ to display Impedance 600Ω .
 - (h) Edit Sens, 6, dB, and Edit Sens.
 - (11) Set audio analyzer controls as listed in (a) through (e) below.
 - (a) Source frequency to 30 Hz.
 - (b) Source level to 1 V.
 - (c) Impedance to 600Ω
 - (d) Analyzer to measure level in dB.
 - (e) Audio analyzer should indicate approximately 0 db, set RATIO mode.
 - (12) Verify that the audio analyzer indicates within limits listed in table 13.
- (13) Set the audio analyzer output frequency to the values listed in table 13 and repeat (12) above.

Table 13. External AM Frequency Response.

	Audio analyzer	Audio analyzer indication	
Test description	output frequency (Hz)	Min (dB)	Max (dB)
100 Hz Response	100	-0.3	0.3
1 kHz Response	1000	-0.3	0.3
2 kHz Response	2000	-0.3	0.3
5 kHz Response	5000	-0.3	0.3
10 kHz Response	10000	-0.3	0.3

- (14) Reduce all outputs to minimum.
- (15) Disconnect equipment setup.
- **b.** Adjustments. No further adjustments can be made.

13. Frequency Modulation

a. Performance Check

(1) Connect equipment as shown in figure 5 below.

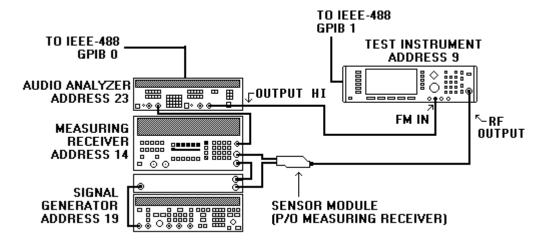


Figure 5. Frequency modulation hookup.

- (2) Set measuring receiver to measure frequency modulation, with **+PEAK** detector, **<20 Hz** high pass and **>200 kHz** Lo pass filters and at a frequency of 5 GHz.
 - (3) Press TI keys as listed in (a) through (j) below.
 - (a) SYSTEM, Rest.
 - (b) **OUTPUT** off.
 - (c) Level Control, L1, Edit L1, 0, and dB.
 - (d) Frequency Control, F0, Edit F0, 5, and GHz.
 - (e) OUTPUT on.
 - (f) Modulation, FM, More, Locked, Previous Menu.
 - (g) Edit Dev., ., 2, 4, 0, MHz, Edit Dev.
 - (h) Mod. Wave, arrow key to ~, Select, Previous Menu.
 - (i) Edit Rate, 1, 0, 0, kHz, Edit Rate.
 - (i) **On/Off** to on.
- (4) Verify that the measuring receiver indication is within 240 kHz FM locked limits listed in table 14.

- (5) Set audio analyzer controls as listed in (a) through (d) below.
 - (a) PRGM 99 ENTER RCL.
 - (b) 600Ω output.
 - (c) Source frequency to 25 kHz.
 - (d) Source level to 1 V.
- (6) Press TI keys as listed in (a) through (f) below.
 - (a) On/Off to off.
 - (b) More, Int/Ext to Ext.
 - (c) **Front/Rear** to front.
 - (d) $600 \Omega/50 \Omega$ to display Impedance 600Ω .
 - (e) Edit Sens, 1, 0, 0, kHz.
 - (f) On/Off to on.
- (7) Set audio analyzer to measure level in dB mode and press RATIO on the audio analyzer.
- (8) Set the audio analyzer to remaining frequencies listed in table 14, and verify that the audio analyzer indicates within limits listed in table 14.

Table 14. FM Deviation Locked and Response

Test	Audio analyzer output frequency	Measuring receiver/audio analyzer indication	
description	(Hz)	Min	Max
240 kHz FM Locked		$228.00~\mathrm{kHz}$	$252.00~\mathrm{kHz}$
25 kHz Reference	25000	-20	0.0
3 kHz Response	3000	-1	1
10 kHz Response	10000	-1	1
20 kHz Response	20000	-1	1
30 kHz Response	30000	-1	1
40 kHz Response	40000	-1	1
50 kHz Response	50000	-1	1

- (9) Press TI keys as listed in (a) through (h) below.
 - (a) On/Off to off.
 - (b) More, Int/Ext to Int.
 - (c) **Front/Rear** to front.
 - (d) More, Locked, Previous Menu.
 - (e) Edit Dev., ., 2, 4, 0, MHz, Edit Dev.
 - (f) Mod Wave, arrow key to ~, Select, Previous Menu.
 - (g) Edit Rate, 1, 0, kHz, Edit Rate.
 - (h) On/Off to on.

- (10) Set audio analyzer controls as listed in (a) through (c) below.
 - (a) PRGM 99 ENTER RCL.
 - (b) Low pass filter to 80 kHz.
 - (c) Analyzer section to measure distortion.
- (11) Verify that the audio analyzer distortion indication is less than the maximum indication listed in table 15 for Distortion @ 240 kHz Dev.
 - (12) Press TI keys as listed in (a) and (b) below.
 - (a) More, Unlocked Narrow, Previous Menu.
 - (b) Edit Rate, 1, 0, kHz, Edit Rate.
 - (13) Set the measuring receiver HP filter to 300 Hz.
- (14) Verify that the measuring receiver indication is within the limits listed in table 15 for 240 kHz FM unlocked.
 - (15) Press TI keys as listed in (a) and (b) below.
 - (a) More, Locked, Previous Menu.
 - (b) Edit Rate, 2, 0, 0, kHz, Edit Rate.
- (16) Set the measuring receiver HP filter to **50 Hz**, LP filter to **>20 kHz**, and set to measure **AM**.
- (17) Verify that the measuring receiver indication is less than the maximum limit listed in table 15 for Incidental AM @ 5 GHz.

Table 15. FM Meter.

Table 15. I'M Metel.				
	Audio analyzer/measuring receiver			
	indication			
Test description	Min	Max		
Distortion @ 240 kHz Dev	0	1		
240 kHz FM unlocked	$228~\mathrm{kHz}$	$252~\mathrm{kHz}$		
Incidental AM @ 5 GHz	0	2		

- (18) Disconnect equipment setup and reconnect equipment as shown in figure 3.
- (19) Press TI keys as listed in (a) through (j) below.
 - (a) SYSTEM, Rest.
 - (b) **OUTPUT** off.
 - (c) Level Control, L1, Edit L1, 0, and dB.
 - (d) Frequency Control, F0, Edit F0, 5, and GHz.

- (e) **OUTPUT** on.
- (f) Modulation, FM, More, UnLocked Wide, Previous Menu.
- (g) Mod Wave, arrow key to highlight square wave, Select, Previous Menu.
- (h) Edit Dev., 1, 0, 0, MHz, Edit Dev.
- (i) Edit Rate, 0, ., 4, Hz, Edit Rate.
- (j) On/Off to on.
- (20) Set spectrum analyzer as listed in (a) and (b) below.
 - (a) Center Freq to 5 GHz.
 - (b) **Span** to **50 MHz**.
- (21) Set the spectrum analyzer **Span** to **5 MHz** and adjust the center frequency control to position the low carrier at the center of the display. Record the frequency reading.
- (22) Adjust the center frequency counter to position the high carrier at the center of the display. Record the frequency reading.
- (23) Verify that the difference between the value recorded in (21) above and (22) above is within the limits listed in table 16.

Table 16. Peak to Peak Frequency Deviation

	Spectrum analyzer indication		
Test description	Min Max		
200 MHz Pk to Pk dev.	190.000 M	210.000 M	

- (24) Reduce outputs to minimum.
- (25) Disconnect equipment setup.
- **b.** Adjustments. No further adjustments can be made.

14. Pulse Modulation

a. Performance Check

(1) Connect equipment as shown in figure 6 below.

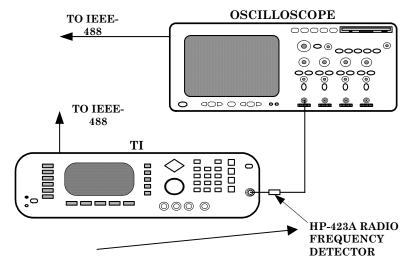


Figure 6. Pulse modulation hookup.

- (2) Press TI keys as listed in (a) through (k) below.
 - (a) SYSTEM, Rest.
 - (b) **OUTPUT** off.
 - (c) Level Control, L1, Edit L1, 7, and dB.
 - (d) Frequency Control, F0, Edit F0, 5, and GHz.
 - (e) OUTPUT on.
 - (f) Modulation, Pulse, and On/Off to on.
 - (g) More, Config, Clock 40/10 to 40.
- (h) **Top Menu**, **More**, **Mode**, press arrow key to highlight **Single**, **Select**, and **Previous Menu**.
 - (i) TRIGGER, press arrow key to highlight Free Run, Select, and Previous Menu.
 - (j) Previous Menu, Edit Period, 1, 0, uS, Edit Period.
 - (k) Edit Width, 5, uS, and Edit Width.
 - (3) Set oscilloscope as listed in (a) through (f) below.
 - (a) Vertical 1 Input 50Ω to on (lit).
 - (b) Vertical 1 scale to 20 mV.
 - (c) **Trigger Source** to 1.
 - (d) Trigger Sweep to Auto.
 - (e) Trigger Slope to -\tau_.
 - (f) Horizontal sweep speed to 10 nS.
- (4) Measure rise time and verify that the oscilloscope indication is less than the rise time limit listed in table 17.
- (5) Select the remaining oscilloscope measurement types listed in table 17 and repeat (4) above for the appropriate type.

Table 17. Pulse Characteristics

Oscilloscope measurement type	Maximum indication
Rise Time	10 nS
Overshoot	10
Fall Time	10 nS

- (6) Disconnect equipment setup and reconnect as shown in figure 3.
- (7) Press TI keys as listed in (a) through (e) below.
 - (a) SYSTEM, Rest.
 - (b) **OUTPUT** off.
 - (c) Level Control, L1, Edit L1, 0, dB, and Edit L1.
 - (d) Frequency Control, F0, Edit F0, 1, and GHz Edit F0.
 - (e) **OUTPUT** on.
- (8) Set spectrum analyzer as listed in (a) through (j) below.
 - (a) **Preset**.
 - (b) AMPLITUDE, Ref Level, 10 dBm.
 - (c) Frequency, Center Freq, 1, GHz.

- (d) BW/Avg, VIDEO BW to Auto.
- (e) Res BW to Auto.
- (f) SPAN, 1, MHz.
- (g) Peak Search.
- (h) Marker \rightarrow , Mkr \rightarrow CF.
- (i) $Mkr \rightarrow Ref Lvl$.
- (j) SPAN, 0, Hz.
- (9) Press TI keys as listed in (a) through (g) below.
 - (a) Modulation, Pulse, ON/OFF to on.
 - (b) More, Config, Clock 40/10 to 40, and Top Menu.
 - (c) More, Mode, arrow key to highlight Single, Select, and Previous Menu.
 - (d) TRIGGER, arrow key to highlight Free Running, Select, and

Previous Menu.

- (e) Previous Menu, Edit Period, 10 ms, and Edit Period.
- (f) Edit Width, 5 ms, and Edit Width.
- (g) On/Off to on.
- (10) Press spectrum analyzer keys as indicated in (a) through (g) below:
 - (a) TRIG, VIDEO, -10, dBm.
 - (b) BW, VIDEO BW, 100 kHz.
 - (c) RES BW, 100 kHz.
 - (d) SPAN, SWEEP TIME, 50, ms.
 - (e) BW/Avg, Avg Type, 30.
 - (f) Sweep, Single.
 - (g) Peak Search.
- (11) Verify that the marker indication is within minimum and maximum limits listed in table 18 for the 1 GHz Pulse On test.
 - (12) Press spectrum analyzer Freq Count, Marker, Delta keys.
- (13) Press spectrum analyzer \(\begin{aligned}
 \text{ key one time.} \text{ Marker should be located in the valley between the signal peaks.}
 \end{aligned}
- (14) Verify that the ΔMkr amplitude indicates within the limits listed in table 18 for the 1 GHz Pulse On/Off ratio.

Table 18. Pulse On/Off Ratio Test

	Spectrum analyzer indication		
Test description	Min	Max	
1 GHz Pulse On	-2	2	
1 GHz Pulse ON/OFF RATIO	-110	-80	

- (15) Reduce outputs to minimum.
- (16) Disconnect equipment setup
- **b.** Adjustments. No further adjustments can be made.

TB 9-6625-2323-35

15. Final Procedure

- a. Deenergize and disconnect all equipment.
- b. Annotate and affix DA label/form in accordance with TB 750-25.

By Order of the Secretary of the Army:

PETER J. SCHOOMAKER General, United States Army Chief of Staff

Official

SANDRA R. RILEY

Administrative Assistant to the
Secretary of the Army

0434304

Distribution:

To be distributed in accordance with the initial distribution number (IDN) 344717, requirements for calibration procedure TB 9-6625-2323-35.

Instructions for Submitting an Electronic 2028

The following format must be used if submitting an electronic 2028. The subject line must be exactly the same and all fields must be included; however, only the following fields are mandatory: 1, 3, 4, 5, 6, 7, 8, 9, 10, 13, 15, 16, 17, and 27.

From: "Whomever" whomever@redstone.army.milT

To: <2028@redstone.army.mil

Subject: DA Form 2028 1. **From**: Joe Smith

2. Unit: home

Address: 4300 Park
 City: Hometown

5. St: MO6. Zip: 77777

7. Date Sent: 19-OCT -93
 8. Pub no: 55-2840-229-23

9. Pub Title: TM

10. Publication Date: 04-JUL-85

11. Change Number: 7
12. Submitter Rank: MSG
13. Submitter FName: Joe
14. Submitter MName: T

15. Submitter LName: Smith

16. Submitter Phone: 123-123-1234

17. **Problem**: 1 18. Page: 2 19. Paragraph: 3

20. Line: 421. NSN: 522. Reference: 623. Figure: 724. Table: 8

25. Item: 9 26. Total: 123

27. **Text**

This is the text for the problem below line 27.

PIN: 078934-000